NERSC User Environment

David TurnerNERSC User Services Group

September 10, 2013

Overview

- Login Nodes, File Systems, and Dot Files
 - David Turner
- Software Modules
 - Doug Jacobsen
- Compilers
 - Mike Stewart

Login Nodes

Edison

- Six nodes
 - 16 cores, 2.0GHz Intel Sandy Bridge
 - 512GB

Hopper

- Eight nodes
 - 16 cores, 2.4GHz AMD Opteron
- Four nodes
 - 32 cores, 2.0GHz AMD Opteron
- 128GB

Carver

- Four nodes
 - 8 cores, 2.66GHz Intel Nehalem
 - 48GB

Login Node Access

Connect (via ssh) to load balancer

- edison.nersc.gov
- hopper.nersc.gov
- carver.nersc.gov

Load balancer selects login node based on:

- Number of connections
- Memory of previous connections from same IP
 - If you login everyday, you'll probably end up on the same login node every time.

Login Node Usage

- Login nodes are shared by many users, all the time
- Edit files, compile programs, submit batch jobs
- Some post-processing/data analysis
 - IDL
 - MATLAB
 - NCL
 - python
- Some file transfers
 - Use data transfer nodes for large/long-running transfers
- Please use discretion
 - All users get frustrated by sluggish interactive response

Login Node Guidelines

- Determine number of available cores
 % grep processor /proc/cpuinfo | wc -l
- Determine amount of physical memory
 % grep MemTotal /proc/meminfo
- Use "top" command to view process activity
- Limit use of parallel "make"
 % make -j 4 all
- Use no more than 50% of available cores
- Use no more than 25% of available memory
- NERSC will kill user processes if response becomes unacceptable

Long-Term File Systems

Global home directories

- Source/object/executable files, batch scripts, input files, configuration files, batch job summaries (not for running jobs)
- Backed up
- 40GB permanent quota
- \$HOME

Global project directories

- Sharing data between people and/or systems
- By PI request
- Backed up if quota less than 5TB
- 4TB default quota

Short-Term File Systems

Local scratch directories

- Cray (Edison, Hopper) only
- Large, high-performance parallel Lustre file system
- Not backed up; files purged after 12 weeks
- Hopper: 5TB default quota; Edison: 10TB default quota
- \$SCRATCH, \$SCRATCH1, \$SCRATCH2, \$SCRATCH3

Global scratch directories

- All systems
- Large, high-performance parallel GPFS file system
- Not backed up; files purged after 12 weeks
- 20TB default quota
- \$GSCRATCH

File System Suggestions

- Use \$SCRATCH for running Hopper/Edison batch
- Use \$GSCRATCH for running Carver batch
- Performance can be limited by metadata
 - Do not store 1000s of files in single directory
- Use "tar" to conserve inodes
- Use HPSS to archive important data
 - Protection against hardware failure
 - Quota management

Shell Initialization Files

Standard dot files

- .bashrc, .profile, .cshrc, .login, etc.
- Symbolic links to read-only files
 - Allows NERSC to provide common environment

Personal dot files

- Aliases, environment variables, modules, etc.
- Use ".ext" files
- .bashrc.ext, .profile.ext, .cshrc.ext, .login.ext, etc.

Use "fixdots" to start over

- Creates \$HOME/KeepDots.<timestamp>
- Restores all dot files to current default state

National Energy Research Scientific Computing Center

